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a b s t r a c t

This paper presents a finite volume local evolution Galerkin (FVLEG) scheme for solving the
hyperbolic conservation laws. The FVLEG scheme is the simplification of the finite volume
evolution Galerkin method (FVEG). In FVEG, a necessary step is to compute the dependent
variables at cell interfaces at tn + s (0 < s 6 Dt). The FVLEG scheme is constructed by taking
s ? 0 in the evolution operators of FVEG. The FVLEG scheme greatly simplifies the evalu-
ation of the numerical fluxes. It is also well suited with the semi-discrete finite volume
method, making the flux evaluation being decoupled with the reconstruction procedure
while maintaining the genuine multi-dimensional nature of the FVEG methods. The deri-
vation of the FVLEG scheme is presented in detail. The performance of the proposed
scheme is studied by solving several test cases. It is shown that FVLEG scheme can obtain
very satisfactory numerical results in terms of accuracy and resolution.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The numerical solutions of systems of hyperbolic conservation laws have been dominated by Riemann-solver-based
schemes since the work of Godunov [4], Van Leer [22], Harten–Lax [5], Osher and Solomon [15] and Roe [17]. This approach,
known as flux-difference splitting (FDS), has the desirable property of accurately resolving shock waves as well as contact
discontinuities. When extending the flux-difference schemes to multi-dimensional problems, the so-called grid aligned finite
volume approach or dimensional splitting method is adopted traditionally using one-dimensional Riemann solvers.
However, for multi-dimensional problem, there is in general no longer a finite number of directions of information
propagation. Roe [18] has pointed out that the approach based on one-dimensional Riemann solvers may lead to a misinter-
pretation of the local wave structure of the solution. In fact, it turned out that in certain cases, e.g. when there are strong
shocks or waves are propagating in directions that are oblique with respect to the mesh, this approach leads to structural
deficiencies and large errors in the solutions [8,16].

To overcome the drawbacks of existing methods based on dimensional splitting or the ‘‘grid-aligned” approaches, there
have been considerable efforts to develop so-called ‘‘genuinely multi-dimensional schemes” for solving hyperbolic conser-
vation laws in recent years [2,3,6,14]. While we are not in the position to give a detailed review of these schemes, we would
. All rights reserved.
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like to draw the readers’ attention to the genuinely multi-dimensional finite volume evolution Galerkin (FVEG) method [11]
which is also the starting point of the present paper.

The finite volume evolution Galerkin (FVEG) schemes can be considered as a generalization of the original idea of Godu-
nov to multi-dimensional hyperbolic conservation laws within the framework of the finite volume approach. To construct
genuinely multi-dimensional schemes, the exact integral equations from a general theory of bicharacteristics for linear
(or linearized) hyperbolic systems were derived. These integral equations were further approximated by approximate evo-
lution operators in such a way that all of the infinitely many directions of propagation of bicharacteristics were explicitly
taken into account. These approximate evolution operators were then used to compute the interfacial dependent variables
for the evaluation of the numerical fluxes.

The FVEG schemes have been studied extensively from theoretical as well as numerical point of view and applied to
various applications [9,10,12,21]. It is shown that the FVEG schemes yield better accuracy and resolution than some well
known finite difference and finite volume schemes. However, theses schemes are more complicated in implementation than
traditional finite volume schemes. For two-dimensional FVEG schemes, the numerical fluxes across cell interfaces are
computed preferably by the Simpson rule. The use of the Simpson rule takes the multi-dimensional effects at cell vertices
into account and is beneficial to the monotonicity of the scheme [9]. Using this approach, the complication comes mainly
from the evaluation of the values of the dependent variables at tn + s (0 < s 6 Dt) at the midpoint and two corner points
of a cell interface. In practice, these interfacial values of the dependent variables are evaluated by certain approximate
evolution operators which involve the integrals around the Mach cones. These integrals can be computed exactly as well
as numerically. However, for slant Mach cones associated with the nonlinear hyperbolic systems (e.g. the Euler equations),
the exact evaluation of the integrals leads to very lengthy and tedious computations, especially when reconstructions with
higher order polynomials are adopted in the finite volume schemes. Using numerical integrations may simplify the
computation; however, it also leads to an increase of computational cost and/or a decrease of accuracy especially when
the reconstruction functions are discontinuous at cell interfaces.

In the present paper, a finite volume local evolution Galerkin (FVLEG ) method is proposed. The FVLEG method is a com-
bination of the FVEG method and the semi-discrete finite volume scheme, in which a necessary step is to let s ? 0 in the
evolution operators of FVEG. It is shown that the FVLEG approach greatly simplifies the evaluation of numerical fluxes
and also makes it straightforward to apply the FVLEG scheme on general shaped control volumes. Furthermore, because
of the semi-discrete nature of the present method, the flux evaluation is decoupled with the reconstruction procedure
and time integration is independent of the spatial discretiztion. These properties are important in constructing both tempo-
rally and spatially higher order schemes. The performance of the proposed scheme is studied by solving several test cases. It
is shown that FVLEG scheme can obtain very good numerical results in terms of both accuracy and resolution.

2. The finite volume schemes

2.1. The governing equations

Although the FVEG schemes can be applied to general hyperbolic conservation laws, we consider here the two-dimen-
sional Euler equations describing the compressible inviscid flows without a loss of the generality. In conservation form
the Euler equations are
@U
@t
þ @F
@x
þ @G
@y
¼ 0; ð1Þ
where U is the vector of the conserved variables given as U = [q,qu,qv,qE]T. The detailed formulations of the flux terms are
well known and are omitted here for brevity.

2.2. The finite volume scheme

We consider some two-dimensional domain in x–y space and assume that it is discretized into structured quadrilateral
control volumes. Examples of typical control cells are shown in Fig. 1. Finite volume schemes for Eq. (1) are obtained by con-
sidering the control volume balance equations
@

@t

Z Z
Xij

Uij dxdyþ
I
@Xij

H � ndl ¼ 0; ð2Þ
where Xij is the control volume, oXij is the boundary of Xij, H = Fi + Gj is the tensor of the fluxes. n = nxi + nyj is the outward
unit vector normal to the surface oXij. On a quadrilateral control volume with its faces denoted by Ik = Ii+a(k),j+b(k) (k = 1, . . . ,4),
where aðkÞ ¼ 1

2 sin ðk�2Þp
2

� �
; bðkÞ ¼ 1

2 cos kp
2

� �
, the finite volume balance equations can be written as
@Uij

@t
¼ � 1

Xij

X4

k¼1

Z
Ik

H � ndl; ð3Þ
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Fig. 1. The control volumes in the finite volume approach.
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where
Uij ¼
RR

Xij
Udxdy

Xij

and Xij ¼
Z Z

Xij

dxdy ð4Þ
are, respectively, the cell average of the conservative variables and cell volume.
R

Ik
H � n dl is the flux across Ik (k = 1, . . . ,4).

There are basically two approaches to handle the time integration. The first one is the fully discrete approach for which
Eq. (3) is further integrated in time from tn to tn+1 = tn + Dt to get
Unþ1
ij ¼ Un

ij �
1
Xij

X4

k¼1

Z tnþDt

tn

Z
Ik

H � ndl

 !
dt: ð5Þ
For a temporally second-order scheme, the time integration can be approximated by the midpoint rule so that
Unþ1
ij ¼ Un

ij �
Dt

Xij

X4

k¼1

Z
Ik

HðEDt=2RXUnÞ � ndl: ð6Þ
In Eq. (6), RX is the reconstruction operator which transforms the cell averages of the conservative variables to their spatial
distributions usually in terms of the piecewise polynomial functions; EDt/2 is the approximate evolution operator to compute
the intermediate value of the solution at tn+1/2 = tn + Dt/2 on cell interface Ik using RXUn as the initial condition. We note this
is the approach adopted in the FVEG schemes.

The second one is the semi-discrete (method of line) approach which is the one adopted in the present paper. In this ap-
proach, Eq. (3) is treated as a system of ordinary differential equations (ODEs) with respect to the time after the spatial dis-
cretization. And the system of ODEs is integrated with a certain algorithm to obtain the numerical solutions. For example, the
second-order Runge–Kutta scheme of Heun can be used for a temporally second-order finite volume scheme:
Uð0Þij ¼ Un
ij;

Uð1Þij ¼ Uð0Þij �
Dt

Xij

X4

k¼1

Z
Ik

HðE0RXUð0ÞÞ � ndl;

Uð2Þij ¼
1
2

Uð0Þij þ
1
2

Uð1Þij �
Dt
Xij

X4

k¼1

Z
Ik

HðE0RXUð1ÞÞ � ndl

 !
;

Unþ1
ij ¼ Uð2Þij ;

ð7Þ
where E0 is the approximate evolution operator to compute the solution at tþn ¼ tn þ 0 on cell interface Ik. It clear that for the
semi-discrete finite volume scheme, the interfacial dependent variables need only to be evolved for an infinite small period
of time to compute the numerical fluxes, whereas for the fully discrete approach, the interfacial dependent variables need to
be evolved for an finite period of time. We will see in Section 4 that the use of the semi-discrete approach greatly simplifies
the evaluation of numerical fluxes and makes it straightforward to apply the numerical scheme on general shaped control
volumes.

To complete a finite volume scheme, we must choose or construct the specific forms of the reconstruction operator, the
approximate evolution operator (EDt/2 or E0) and the numerical integration operator to approximate the flux

R
Ik

H � ndl. In the
rest part of this section will present the procedures for reconstruction and approximate integration of the numerical fluxes,
while the approximate evolution operator E0 used in the present paper will be discussed in detail in Section 4 after a brief
review of the approximate evolution operator EDt/2 of FVEG in Section 3.
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2.3. The reconstructions

In the framework of the finite volume method, it is necessary to reconstruct a piecewise polynomial function, U(x,y, t),
from the cell average data Ui;j. The simplest reconstruction is the 0th order reconstruction, which is
Uðx; y; tÞjðx;yÞ2Xi;j
¼ Uij: ð8Þ
The 0th order reconstruction leads to a spatially first-order scheme. For a second-order scheme, a piecewise linear recon-
struction is sufficient. In the present paper, the reconstruction procedure of [19] is used. In this procedure, the reconstruction
is carried out in terms of primitive variables V = (q,u,v,p)T. The gradient of primitive variables, rWn

i;j, is evaluated using the
Gauss theorem:
rVi;j �
1

Xi;j

X4

k¼1

VknkDlk; ð9Þ
where the Dlk is the length of the cell face Ik. The primitive variables at cell interfaces, Ii±1/2,j for instance, are computed by
Viþ1=2;j ¼ Vi;j þ
1
2

L Viþ1;j � Vi;j;Vi;j � Vi�1;j
� �

;

Vi�1=2;j ¼ Vi;j �
1
2

L Viþ1;j � Vi;j;Vi;j � Vi�1;j
� �

;

where L is the slope limiter which is similar to the smoothness indicator of [20]
Lða; bÞ ¼maxðab;0Þðaþ bÞ
a2 þ b2 : ð10Þ
Using this gradient, the piecewise linear reconstruction in Xi,j is expressed as
Vðx; y; tÞjðx;yÞ2Xi;j
¼ Vij þ

@V
@x

� �
i;j
ðx� xijÞ þ

@V
@y

� �
i;j
ðy� yijÞ: ð11Þ
It should be noted that this reconstruction procedure is valid only for the structured grids. Other reconstruction procedure is
needed if the numerical scheme of the present paper is intended to be applied on the unstructured meshes.

2.4. The approximate cell interface integral

In the FVEG approach, the flux
R

Ik
HðEDt=2RXUnÞ � ndl is preferably approximated by the Simpson rule, namely
Z

Ik

HðEDt=2RXUnÞ � ndl � H Ek;1
Dt=2RXUn

� �
þ 4H Ek;c

Dt=2RXUn
� �

þHðEk;2
Dt=2RXUnÞ

� �
� nkDlk=6; ð12Þ
where Dlk is the length of the Ik interface, the superscripts (k,1), (k,2) represent two end points of Ik interface and the super-
script (k,c) stands for the midpoint of the Ik interface. It is shown in [9,10] that the use of the Simpson rule to approximate
the cell interface integral in the flux computation can lead to a scheme which is monotonic under some conditions. More-
over, it takes multi-dimensional effects from the corners into account. In the present paper, we use the same approach to
handle the flux integration which can be written as
Z

Ik

HðE0RXUÞ � ndl � H Ek;1
0 RXU

� �
þ 4H Ek;c

0 RXU
� �

þH Ek;2
0 RXU

� �� �
� nkDlk=6 ð13Þ
in the framework of the semi-discrete finite volume scheme.

3. A brief review of the FVEG schemes

The central idea of FVEG methods is to construct EDt/2 for evaluating the numerical fluxes through cell interfaces using the
theory of bicharacteristics in a finite volume scheme. In this section, we recall the work of Lukáčová-Medvid’ová et al.
[8,9,11,12] to present the basic idea of the FVEG schemes and to introduce the notations that will be used in deriving the
FVLEG scheme. For this purpose, it is convenient to start with the Euler equations in primitive variable form,
Vt þ A1ðVÞVx þ A2ðVÞVy ¼ 0; ð14Þ
where
V ¼

q
u

v
p

0BBB@
1CCCA; A1 ¼

u q 0 0
0 u 0 1

q

0 0 u 0
0 cp 0 u

0BBB@
1CCCA; A2 ¼

v 0 q 0
0 v 0 0
0 0 v 1

q

0 0 cp v

0BBB@
1CCCA:
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To simplify the construction of EDt/2, the system of Euler equations is linearized by freezing the Jacobian matrices about a
reference state eV ¼ ð~q; ~u; ~v; ~pÞ at point ~P ¼ ð~x; ~y;~tÞ. The linearized system with frozen constant Jacobian matrices can be writ-
ten as
Vt þ A1ðeVÞVx þ A2ðeVÞVy ¼ 0: ð15Þ
Using the characteristic theory, Eq. (15) can be transformed in to the following quasi-diagonalized system:
Wt þ K1Wx þ K2Wy ¼ S; ð16Þ
where
W ¼

w1

w2

w3

w4

0BBBB@
1CCCCA ¼

1
2 �

p
~q~aþ u cos hþ v sin h

� �
q� p

~a2

u sin h� v cos h
1
2

p
~q~aþ u cos hþ v sin h
� �

0BBBBBB@

1CCCCCCA;

K1 ¼ diagðk1;1ðhÞ; . . . ; k1;4ðhÞÞ ¼

~u� ~a cos h 0 0 0

0 ~u 0 0

0 0 ~u 0

0 0 0 ~uþ ~a cos h

0BBBB@
1CCCCA;

K2 ¼ diagðk2;1ðhÞ; . . . ; k2;4ðhÞÞ ¼

~v � ~a cos h 0 0 0

0 ~v 0 0

0 0 ~v 0

0 0 0 ~v þ ~a cos h

0BBBB@
1CCCCA;

S ¼

s1

s2

s3

s4

0BBBB@
1CCCCA ¼

1
2

~a sin h @w3
@x � cos h @w3

@y

� �
0

~a sin h @w1
@x �

@w4
@x

� �
� ~a cos h @w1

@y �
@w4
@y

� �
1
2

~a � sin h @w3
@x þ cos h @w3

@y

� �

0BBBBBBB@

1CCCCCCCA

and ~a ¼

ffiffiffiffiffiffiffiffiffiffiffi
c~p=~q

p
is the speed of sound.

Eq. (16) shows that each characteristic variable wl is evolved along the corresponding bicharacteristic curve
dr
dt

� �
l
¼ ðk1;lðhÞ; k2;lðhÞÞT ; ð17Þ
where r = (x,y)T, according to the relation
Dwl

Dt
¼ @wl

@t
þ k1;lðhÞ

@wl

@x
þ k1;lðhÞ

@wl

@y
¼ sl: ð18Þ
Therefore, given the initial condition at time t, the solution of wl at P = (x,y, t + s) is
wlðx; y; t þ s; hÞ ¼ wlðx� k1;lðhÞs; y� k2;lðhÞs; tÞ þ s0lðhÞ; ð19Þ
where
s0lðhÞ ¼
Z tþs

t
slðx� k1;lðhÞðt þ s� 1Þ; y� k2;lðhÞðt þ s� 1Þ; 1Þd1: ð20Þ
For any given angle h, the four bicharacteristic curves from P denoted by Cl(h), l = 1, . . . ,4 are depicted in Fig. 2. The C1(h) or
C4(h), for h from 0 to 2p, generates the so-called Mach cone or the bicharacteristic cone. We denote Ql(h) as the position
where Cl(h) hits the x–y plane at time t, which, for l = 1, . . . ,4, is given by
Q 1ðhÞ ¼ ðx� ð~u� ~a cos hÞs; y� ð~v � ~a sin hÞs; tÞ;
Q 2ðhÞ ¼ Q 3ðhÞ ¼ ðx� ~us; y� ~vs; tÞ;
Q 4ðhÞ ¼ ðx� ð~uþ ~a cos hÞs; y� ð~v þ ~a sin hÞs; tÞ:

ð21Þ
Using these notations, Eq. (19) can be also written as
wlðP; hÞ ¼ wlðQ lðhÞÞ þ s0lðhÞ ð22Þ



P ′ θ
1Q θ

4 1Q Qθ θ π+

2 3Q Q=x

y

t
( )

( ) ( )

( ), ,

=

P x y t τ= +

aτ

Fig. 2. The bicharacteristic curves and the Mach cone.
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or in vector form as
WðP; hÞ ¼

w1ðQ1ðhÞÞ
w2ðQ2ðhÞÞ
w3ðQ3ðhÞÞ
w4ðQ4ðhÞÞ

0BBB@
1CCCAþ

s01ðhÞ
s02ðhÞ
s03ðhÞ
s04ðhÞ

0BBB@
1CCCA: ð23Þ
For h 2 (0,2p), both Q1(h) and Q4(h) are circles with radius of ãs and center at ðx� ~us; y� ~vs; tÞ. It is also obvious that
Q4(h) = Q1(h + p). Q2(h) = Q3(h) are point at the center of Q1(h) and Q4(h). Multiplication of Eq. (23) with R from the left
and integration with respect h from 0 to 2p leads to:
VðPÞ ¼ 1
2p

Z 2p

0

X4

l¼1

rl½wlðQ lðhÞÞ þ s0lðhÞ�
 !

dh: ð24Þ
In [11], the symmetries in the characteristic variables and the source terms were used to get the detailed expressions of the
solution in terms of the primitive variables
qðPÞ ¼ qðP0Þ � pðP0Þ
~a2 þ

1
2p

Z 2p

0

pðQÞ
~a2 �

~q
~a

uðQÞ cos h�
~q
~a

vðQÞ sin h

	 

dh�

~q
~a

1
2p

Z 2p

0

Z tþs

t
Sðr� ½~u� ~anðhÞ�

� ðt þ s� fÞ; f; hÞdfdh; ð25Þ

uðPÞ ¼ 1
2p

Z 2p

0
� pðQÞ

~q~a
cos hþ uðQÞ cos2 hþ vðQÞ sin h cos h

	 

dhþ 1

2p

Z 2p

0

Z tþs

t
cos hSðr� ½~u� ~anðhÞ�

� ðt þ s� fÞ; f; hÞdfdhþ 1
2

uðP0Þ � 1
2~q

Z tþs

t
pxðr� ~u� ðt þ s� fÞ; fÞdf; ð26Þ

vðPÞ ¼ 1
2p

Z 2p

0
�pðQÞ

~q~a
sin hþ uðQÞ cos h sin hþ vðQÞ sin2 h

	 

dhþ 1

2p

Z 2p

0

Z tþs

t
sin hSðr� ½~u� ~anðhÞ�

� ðt þ s� fÞ; f; hÞdfdhþ 1
2

vðP0Þ � 1
2~q

Z tþs

t
pyðr� ~u� ðt þ s� fÞ; fÞdf; ð27Þ

pðPÞ ¼ 1
2p

Z 2p

0
½pðQÞ � ~q~auðQÞ cos h� ~q~avðQÞ sin h�dh� ~q~a

1
2p

Z 2p

0

Z tþs

t
Sðr� ½~u� ~anðhÞ� � ðt þ s� fÞ; f; hÞdfdh;

ð28Þ
where the source term S is given by
Sðr; t; hÞ :¼ ~a½uxðr; t; hÞ sin2 h� ðuyðr; t; hÞ þ vxðr; t; hÞÞ � sin h cos hþ vyðr; t; hÞ cos2 h�; ð29Þ
and
r� ½~u� ~anðhÞ� � ðt þ s� fÞ ¼ ðx� ð~u� ~a cos hÞðt þ s� fÞ; y� ð~u� ~a cos hÞðt þ s� fÞÞ:
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We note that the notations Q = Q1(h) and P
0
= Q2 adopted in Ref. [11] are used in Eqs. (25)–(28). Eqs. (25)–(28) are exact inte-

gral equations for the solution to the linearized Euler equations (8). It is currently impossible to get an explicit solution of
these equations. Therefore, certain approximate operators which are termed as EG1 through EG5 in [11,12,23] have been
constructed to get the approximate explicit solutions. These approximate solutions are the basis of the FVEG method. When
these approximate evolution operators with s = Dt/2 are applied to the piecewise polynomial data obtained by the recon-
struction procedure, these approximate solutions are served as EDt=2RXUn in Eq. (6). We will not review the detailed deriva-
tion of EG1 through EG5 in the present paper for brevity. However, some of the approximations will be used or extended in
Section 4 of the present paper when designing the FVLEG method.

4. The finite volume local evolution Galerkin method

In the present paper, the finite volume local evolution Galerkin (FVLEG ) method will be presented. The idea behind FVLEG
is very simple. If we set s = 0 in Eq. (24) (or Eqs. (25)–(28)), it gives the solutions that are evolved for an infinite small period
of time from the initial conditions at time t in terms of the primitive variables. In this sense, the FVLEG method is functionally
identical to computing the numerical fluxes by using the Riemann solvers in the traditional semi-discrete finite volume
methods.

The simplest way to construct the approximate evolution operator E0 in FVLEG is to set s = 0 in Es, the approximate evo-
lution operator of the FVEG method. In other words, we can use the approximate evolution operators EG1 through EG5
developed in [11,12,23] directly to construct the E0 by simply taking s = 0. However, when closely examining the approach
for deriving EG1 through EG5, we find that these derivations are highly relied on the Lemma 2.1 of [7]. Strictly speaking, this
lemma can be only applied to smooth functions, which is not the case of the present paper. Therefore, in this section, we
firstly derive Es using a new lemma which is similar to Lemma 2.1 but applicable to piecewise smooth functions, and then
we construct E0 according to Es.

4.1. Es

In this section, we will describe the derivation of the approximate evolution operator Es at a vertex of the control volumes.
For the structured quadrilateral grids, there are four control volumes around the vertex r = (x,y)T which is shown in Fig. 3(a).
For a more general case such as the unstructured grids shown in Fig. 3(b), we assume there are M control volumes with a
common vertex r = (x,y)T. In this case, we need to construct Es at r = (x,y)T which is the endpoint of M rays that are separated
by M control volumes. In this sense, the approximate evolution operator at the center of a cell interface can be viewed as a
special case of that at a cell vertex, which is the endpoint of two rays separated by two control volumes shown in Fig. 3(c).
We consider the general case, in which we assume the circle Q at time t corresponding to the Mach cone with its apex at
P = (x,y, t + s) is divided by the M rays with the common vertex r = (x,y)T into N segments of arc, which is shown in Fig. 4
for the structured quadrilateral grid case. For the ith arc, its starting and ending angles are denoted by hib and hie, respectively.
The hib and hie can be obtained from the geometry of the control volume and Eq. (21). It should be noted that the determi-
nation of hib and hie is far from trivial since there are many possible ways of intersections depending on the reference stateeV ¼ ð~q; ~u; ~v ; ~pÞ at r = (x,y)Tand geometries of the control volumes. Nevertheless, this is a purely geometrical problem and can
be solved without any principle difficulties. The procedure to determine hia and hib is presented in Appendix of the present
paper. After the determination of hia and hib, Eqs. (25)–(28) can be rewritten into
Fig. 3.
grid; (b
qðPÞ ¼ qðP0Þ � pðP0Þ
~a2 þ

1
2p

XN

i¼1

Z hie

hib

PðQÞ
~a2 �

~q
~a

uðQÞ cos h�
~q
~a

vðQÞ sin h

	 

dh

�
~q
~a

1
2p

XN

i¼1

Z hie

hib

Z tþs

t
Sðr� ½~u� ~anðhÞ� � ðt þ s� fÞ; 1; hÞdf

	 

dh; ð30Þ
0
P

0
P 0

P

)b()a( (c) 

The locations where the approximate evolution operators Es are constructed. (a) The vertex of the control volumes for the structured quadrilateral
) the vertex of the control volumes for the unstructured grid; (c) the midpoint of the edge of two adjacent control volumes.
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Fig. 4. Possible intersections between the Mach cone and the edges of the control volumes.
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uðPÞ ¼ 1
2p

XN

i¼1

Z hie

hib

�pðQÞ
~q~a

cos hþ uðQÞ cos2 hþ vðQÞ sin h cos h

	 

dh

þ 1
2p

XN

i¼1

Z hie

hib

Z tþs

t
cos hSðr� ½~u� ~anðhÞ� � ðt þ s� fÞ; f; hÞdf

	 

dh

þ 1
2

uðP0Þ � 1
2~q

Z tþs

t
pxðr� ~u� ðt þ s� fÞ; fÞdf; ð31Þ

vðPÞ ¼ 1
2p

XN

i¼1

Z hie

hib

� pðQÞ
~q~a

sin hþ uðQÞ cos h sin hþ vðQÞ sin2 h

	 

dh

� 1
2p

XN

i¼1

Z hie

hib

Z tþs

t
sin hSðr� ½~u� ~anðhÞ� � ðt þ s� fÞ; f; hÞdf

	 

dh

þ 1
2

vðP0Þ � 1
2~q

Z tþs

t
pyðr � ~u� ðt þ s� fÞ; fÞdf; ð32Þ

pðPÞ ¼ 1
2p

XN

i¼1

Z hie

hib

½pðQÞ � ~q~auðQÞ cos h� ~q~avðQÞ sin h�dh

� ~q~a
1

2p
XN

i¼1

Z hie

hib

Z tþs

t
Sðr� ½~u� ~anðhÞ� � ðt þ s� fÞ; f; hÞdf

	 

dh: ð33Þ
To avoid the computation of the integrals
R tþs

t pxðr� ~u� ðt þ s� fÞ; fÞdf and
R tþs

t pyðr� ~u� ðt þ s� fÞ; fÞdf in Eqs. (31) and
(32), we use the following relations [11]:
Z tþs

t
pxðr� ~u� ðt þ s� fÞ; fÞdf ¼ �~q½uðPÞ � uðP0Þ�; ð34ÞZ tþs

t
pyðr� ~u� ðt þ s� fÞ; fÞdf ¼ �~q½vðPÞ � vðP0Þ�: ð35Þ
Another difficulty in computing Eqs. (30)–(33) arises from the evaluation of the integrals containing the source terms. Here
we use the rectangle rule to approximate the time integrals of the source term,
Z hie

hib

Z tþs

t
Sðr� ½~u� ~anðhÞ� � ðt þ s� fÞ; 1; hÞdf

	 

dh � s

Z hie

hib

SðQðhÞÞdh; ð36ÞZ hie

hib

Z tþs

t
cos hSðr� ½~u� ~anðhÞ� � ðt þ s� fÞ; 1; hÞdf

	 

dh � s

Z hie

hib

SðQðhÞÞ cos hdh; ð37ÞZ hie

hib

Z tþs

t
sin hSðr� ½~u� ~anðhÞ� � ðt þ s� fÞ; 1; hÞdf

	 

dh � s

Z hie

hib

SðQðhÞÞ sin hdh: ð38Þ
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This approximations have been used in [11] to construct the EG1, EG3 operators. To further simplify the evaluation of Eqs.
(36)–(38), the following lemma is introduced [1].

Lemma 4.1. Suppose x 2 C1ðR2Þ, and / 2 C1ðRÞ is continuous and differentiable along the arc: A(Q): {Q = (rcosh, rsinh);
h 2 (hib,hie )}. If the integrations are along the arc, we have the following relation:
/ðhieÞxðQðhieÞÞ � /ðhibÞxðQðhibÞÞ ¼
Z hie

hib

/0xðQÞdh� r
Z hie

hib

/ sin h
@x
@x
� cos h

@x
@y

� �
dh:
This lemma is similar to the Lemma 2.1 of [7]. However, Lemma 2.1 is only applicable to 2p periodic smooth functions.
The present lemma is valid for the integrations along an arc. It is then applicable to the integration along a circle with piece-
wise smooth data. Using this lemma, the evaluation of the integrals containing the source terms in Eqs. (36)–(38) can be
greatly simplified. For example, taking / = sinh, x = u and r = ãs, we have
sinðhieÞuðQðhieÞÞ � sinðhibÞuðQðhibÞÞ ¼
Z hie

hib

cos huðQÞdh� ~as
Z hie

hib

sin h sin h
@u
@x
� cos h

@u
@y

� �
dh:
Similarly, taking / = �cosh, x = v, r = as, we obtain
� cosðhieÞvðQðhieÞÞ þ cosðhibÞvðQðhibÞÞ ¼
Z hie

hib

sin hvðQÞdhþ ~as
Z hie

hib

cos h sin h
@v
@x
� cos h

@v
@y

� �
dh:
Therefore,
s
Z hie

hib

SðQðhÞÞdh ¼
Z hie

hib

ðuðQðhÞÞ cos hþ vðQðhÞÞ sin hÞdh� sinðhieÞuðQðhieÞÞ þ cosðhieÞvðQðhieÞÞ þ sinðhibÞuðQðhibÞÞ

� cosðhibÞvðQðhibÞÞ: ð39Þ
Similarly, we can get
s
Z hie

hib

SðQÞ sin hdh ¼
Z hie

hib

ð2uðQðhÞÞ sin h cos hþ vðQðhÞÞð2 sin2 h� 1ÞÞdh� sin2 hieuðQðhieÞÞ

þ sin hie cos hievðQðhieÞÞ þ sin2 hibuðQðhibÞÞ � sin hib cos hibvðQðhibÞÞ ð40Þ
and
s
Z hie

hib

SðQÞ cos hdh ¼
Z hie

hib

ðuðQðhÞÞð2 cos2 h� 1Þ þ 2vðQðhÞÞ sin h cos hÞdh� sin hie cos hieuðQðhieÞÞ

þ cos2 hievðQðhieÞÞ þ sin hib cos hibuðQðhibÞÞ � cos2 hibvðQðhibÞÞ: ð41Þ
So far, we have constructed the approximate evolution operator Es. When we set s = Dt/2, this operator can be used to com-
pute the numerical fluxes in FVEG schemes. We note the present derivation of the approximate evolution operator Es is dif-
ferent with those of [11] in the fact that present method can be applied directly to piecewise smooth data obtained from the
reconstruction procedure.

4.2. E0

To construct E0, we let s ? 0 in Eqs. (30)–(33). We note that hib and hie do not depend on s. The effects of s ? 0 is to make
P ? P0, Q ? P0 and P0 ? P0 where P0 = (x,y, t); and the length of the arc with two end points Q(hib) and Q(hie) will tends to zero
when s ? 0. This fact is significant in simplifying the integrals in Eqs. (30)–(33) and (39)–(41), because in this case, we have
VðQðhÞÞ ! Vi for hib 6 h 6 hie;
where Vi is the vector of the primitive variables at P0 evaluated in terms of the reconstruction in the control volume contain-
ing the arc with two end points Q(hib) and Q(hie). Therefore, the primitive variables which are the functions of Q(h) in Eqs.
(30)–(33) and (39)–(41) can be considered as constants for hib 6 h 6 hie and can thus be taken out from the integrals. For
example, Eq. (39) can be simplified as
s
Z hie

hib

SðQðhÞÞdh ¼ ui

Z hie

hib

cos hdhþ v i

Z hie

hib

sin hdh� sinðhieÞui þ cosðhieÞv i þ sinðhibÞui � cosðhibÞv i ¼ 0:
It is also easy to prove that
s
Z hie

hib

SðQÞ sin hdh ¼ 0
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and
s
Z hie

hib

SðQÞ cos hdh ¼ 0:
The extensive use of this argument in Eqs. (30)–(33) leads to the following formulations:
qðPÞ ¼ qðP0Þ � pðP0Þ
~a2 þ

1
2p

XN

i¼1

pi

~a2 ðhie � hibÞ �
~q
~a

uiðsin hie � sin hibÞ þ
~q
~a

v iðcos hie � cos hibÞ
	 


; ð42Þ

uðPÞ ¼ 1
p
XN

i¼1

� pi

~q~a
ðsin hie � sin hibÞ þ ui

hie � hib

2
þ sin 2hie � sin 2hib

4

� �
� v i

cos 2hie � cos 2hib

4

	 

; ð43Þ

vðPÞ ¼ 1
p
XN

i¼1

pi

~q~a
ðcos hie � cos hibÞ � ui

cos 2hie � cos 2hib

4
þ v i

hie � hib

2
� sin 2hie � sin 2hib

4

� �	 

; ð44Þ

pðPÞ ¼ 1
2p

XN

i¼1

½piðhie � hibÞ � ~q~auiðsin hie � sin hibÞ þ ~q~av iðcos hie � cos hibÞ�; ð45Þ
which are the specific forms of E0 for the present paper.
After the construction of E0, the implementation of the FVLEG method can be summarized as follows.

(1) Reconstruction. The reconstruction procedures of Section 2.3 are used.
(2) Evaluation of the numerical fluxes. In the present paper, the numerical fluxes are computed using Eq. (13) in which the

interfacial values of the dependent variables are obtained by applying E0 on the reconstructed piece-wise polynomial
dependent variables.

(3) The time integration. We use the second-order Runge–Kutta scheme, Eq. (7), to solve the system of ODEs resulted from
the semi-discrete finite volume approach.

4.3. Remarks

Remark 1. Lemma 4.1 is a key element in constructing E0. The direct consequence of Lemma 4.1 is that all terms containing
Sðr� ½~u� ~anðhÞ� � ðt þ s� fÞ; f; hÞ in Eqs. (30)–(33) vanish in E0. If Lemma 2.1 of [7] is used instead, these terms are not zero
when s ? 0. We note that the source terms S in Eq. (16) are not simply set to zero in deriving E0. In fact, the terms containing
px and py in Eqs. (31) and (32) are parts of S. During the review process of the present paper, we found that the same lemma
had been used in [1] for different purpose.

Remark 2. It is interesting to note that in [9,13], the Eswas designed as the combination of an approximate evolution oper-
ator for piecewise constant data (Econst

s ) and another approximate evolution operator for continuous bilinear data (Ebilin
s ).

Although Econst
s is also applied to piecewise smooth data, it is different with the Es of the present paper. This can be seen

clearly from the construction of Econst
s . In deriving Econst

s , the spatial derivatives such as /x are approximated by
/xðP0ð~tÞÞ �
1

pcs

Z 2p

0
uðQðh;~tÞÞ cos hdh
(please refer to [9] for notations); then the integration in above equation is further approximated in order that the Econst
s can

produce the exact solution of the one dimensional linear wave equation with piecewise constant data.

Remark 3. Using the procedures of this section, we cast the computation of the integrals in Es into the evaluation of hib and
hie in E0. This practice simplifies the evaluation of the numerical fluxes. Furthermore, the present numerical flux evaluation
algorithm is designed to be applied on general shaped control volumes. Eqs. (42)–(45) are very general and can be applied on
both structured and unstructured meshes.

Remark 4. The present scheme is a semi-discrete finite volume scheme in which the spatial accuracy is solely determined
by the reconstruction procedures. If a higher order reconstruction is used, the present scheme can achieve higher spatial
accuracy. For the FVLEG scheme, the E0 is independent of the reconstruction procedures. On the other hand, the Es in the
FVEG schemes is closely related to the reconstruction procedures, which makes it more complicate to extend the FVEG
schemes to higher order of accuracy.
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5. Numerical tests

In this section, several test cases are presented to verify the accuracy as well as the shock capturing capability of the pres-
ent scheme. It is reported that the FVEG schemes using some of the approximate evolution operators (EG1–EG4) did not pro-
vide full stability for a CFL number of 1 [9]. However, the numerical tests show that the present scheme is stable up to a CFL
number of 1 when the second-order Runge–Kutta method is used for time integration. In all the test cases of this section, the
CFL number is taken as 0.8.

5.1. Accuracy

We use two test cases to study the accuracy of the present numerical scheme. The first test case is taken from [6]. The
initial condition has zero velocity and radially symmetric q and E which are expressed as
Table 1
L1 error

Grid nu

40 � 40
80 � 80
160 � 1
320 � 3

Table 2
L1 error

Grid nu

40 � 40
80 � 80
160 � 1
320 � 3
qðx; y;0Þ ¼ Eðx; y; 0Þ ¼
1� 0:1ðcosð4prÞ � 1Þ if 0 < r < 0:5;
1 if r P 0:5;

�

where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The problem is solved on a [�1,1] � [�1,1] plane domain.

This case is one-dimensional in nature. Therefore, a 1-D solver is used to compute the ‘‘exact solution”. The grid number is
5000 which is fine enough to obtain a grid independent solution for this test case. Then the numerical results on a sequence
of grids are compared to the ‘‘exact” solution. In this calculation, the piecewise bilinear recovery algorithm of [9] is used in
the reconstruction procedure. For comparison purpose, this test case is also computed using a Lax–Wendroff type finite
volume (LWFV) scheme in which the evolution operator EDt/2 in Eq. (6) is constructed by computing the interfacial
dependent variables using
Vnþ1=2
iþ1=2;j ¼

1
2
ðVn

i;j þ Vn
iþ1;jÞ �

Dt
2
ðA1ðeVÞVx þ A2ðeVÞVyÞni;j þ ðA1ðeVÞVx þ A2ðeVÞVyÞniþ1;j

h i
:

Tables 1 and 2 depict respectively the computed errors in the L1 norm for the present scheme and the LWFV scheme at
t = 0.5. It shows that the present scheme is fully second order and its rate of convergence is higher than the LWFV scheme.
Moreover, the L1 error of the present scheme is 2–3 times smaller than that of the LWFV scheme. Fig. 5 shows the scatter
plots of the numerical solutions with respect to r computed by the present FVLEG scheme and the LWFV scheme. The result
of the FVLEG scheme is not only closer to the exact solution but also less scattering when comparing with the LWFV scheme.
This result indicates that the present scheme is superior than the LWFV scheme in preserving the radial symmetry of the
solutions.

The second test case is a double periodic shear layer problem on a [�1,1] � [�1,1] plane domain with its initial condition
given by:
q ¼ 1:4;p ¼ 4; v ¼ sinðpðxþ 1:5ÞÞ;

u ¼
tanhð15ð0:5þ yÞÞ if y < 0;
tanhð15ð0:5� yÞÞ otherwise:

�

The periodic boundary conditions are applied at all boundaries. Initially, there are two shear layers in the flow field which
will produce two vortices as time evolves. In the initial stage of the flow field evolution, the solutions are smooth. After a
s between the numerical solutions of the FVLEG scheme and the ‘‘exact solution” for the two-dimensional radially symmetric flow problem at t = 0.5.

mber L1 error of q Order L1 error of qu Order L1 error of E Order

1.40E�03 1.02E�03 1.94E�03
3.06E�04 2.20 2.27E�04 2.17 4.28E�04 2.18

60 7.09E�05 2.11 5.10E�05 2.15 9.91E�05 2.11
20 1.70E�05 2.06 1.20E�05 2.09 2.38E�05 2.06

s between the numerical solutions of the LWFV scheme and the ‘‘exact solution” for the two-dimensional radially symmetric flow problem at t = 0.5.

mber L1 error of q Order L1 error of qu Order L1 error of E Order

2.80E�03 2.13E�03 3.95E�03
7.77E�04 1.85 6.01E�04 1.83 1.09E�03 1.86

60 2.21E�04 1.81 1.59E�04 1.91 3.08E�04 1.82
20 5.87E�05 1.91 4.19E�05 1.93 8.17E�05 1.91
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Fig. 5. The scatter plots of the numerical solutions with respect to r for the radially symmetric flow problem.

Table 3
L1 errors between the numerical solutions of the FVLEG scheme and the ‘‘exact solution” for the double periodic shear layer problem at t = 0.2.

Grid number L1 error of q Order L1 error of u Order L1 error of v Order L1 error of p Order

40 � 40 4.09E�03 1.22E�02 5.58E�03 1.55E�02
80 � 80 9.91E�04 2.04 2.18E�03 2.48 1.42E�03 1.98 3.62E�03 2.10
160 � 160 2.10E�04 2.24 5.29E�04 2.05 3.62E�04 1.97 7.58E�04 2.25
320 � 320 4.64E�05 2.18 1.31E�04 2.01 8.58E�05 2.08 1.70E�04 2.16

Table 4
L1 errors between the numerical solutions of the LWFV scheme and the ‘‘exact solution” for the double periodic shear layer problem at t = 0.2.

Grid number L1 error of q Order L1 error of u Order L1 error of v Order L1 error of p Order

40 � 40 9.13E�03 3.33E�02 1.70E�02 3.58E�02
80 � 80 2.54E�03 1.85 9.53E�03 1.81 5.16E�03 1.72 9.43E�03 1.92
160 � 160 6.08E�04 2.06 2.49E�03 1.94 1.30E�03 1.99 2.22E�03 2.09
320 � 320 1.50E�04 2.02 6.24E�04 1.99 3.22E�04 2.01 5.44E�04 2.03
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certain time, shock waves will present in the solutions. The numerical results at t = 0.2 are used to evaluate the convergence
rates of the numerical solutions. At this time, the flow field is still smooth. The test case are computed using the present
FVLEG scheme and the LWFV scheme on a sequence of grids from 40 � 40 to 320 � 320, and the results on a finer
1280 � 1280 grid are served as the ‘‘exact solution” to evaluate the numerical errors of the solutions on coarser grids. Tables
3 and 4 show, respectively, the computed errors in the L1 norm for the present scheme and the LWFV scheme. Again, the
advantage of the present scheme over the LWFV scheme can be clearly seen in terms of both the order of convergence
and the absolute errors.

5.2. Shock capturing capability

In this subsection, we will study the shock capturing capability of the present FVLEG scheme. In this case, the reconstruc-
tion procedure of Section 2.3 is used to suppress the numerical oscillations near the flow discontinuities. Fig. 6 shows the
numerical results of the second test case in Section 5.1 at t = 0.5 when the shock waves have already formed. According
to the density contours shown in Fig. 6(a), the discontinuities are well captured with high resolution. In Fig. 6(b), the jumps
of the velocity vectors across the shock waves can be seen clearly.
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Fig. 8. The contours of the two-dimensional Riemann problem obtained by the FVLEG schemes at T = 0.25 on a 400 � 400 mesh.
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The solution consists of two forward-moving shocks and two backward-moving shocks. In Fig. 8, the contours of solution
obtained by the second-order FVLEG method are plotted. The Mach reflections in x = �y are well resolved.

6. Conclusions

This paper presents a finite volume local evolution Galerkin scheme (FVLEG) for solving the gas dynamic Euler equations.
The FVLEG scheme simplifies the construction and implementation of the FVEG schemes while maintaining the multi-
dimensional nature in numerical flux evaluation. The present numerical flux evaluation algorithm is able to be applied on
general shaped control volumes for both structured and unstructured grids. The present scheme is a semi-discrete finite vol-
ume scheme in which the evaluation of the numerical fluxes is decoupled with the reconstruction procedure. This property
makes it straightforward to achieve higher temporal and spatial accuracy. The performance of the proposed scheme is stud-
ied by solving several test cases. It is shown that FVLEG scheme can obtain satisfactory numerical result in terms of both
accuracy and resolution to flow discontinuities.
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Appendix

This appendix presents the detailed procedure to evaluate hib and hie. Referring to Fig. A1, we have P0 = (x,y, t) and
P = (x,y, t + s). P is the apex of the Mach cone where the interfacial values of the dependent variables will be computed. In
this appendix, we consider the case that r = (x,y)T is the vertex of the control volume Xs,t. We denote e1 and e2 two unit vec-
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Fig. A1. The schematic sketch for evaluating hie and hib.

Y. Sun, Y.-X. Ren / Journal of Computational Physics 228 (2009) 4945–4960 4959
tors corresponding to two rays with their end points at P0 and aligned, respectively, with two edges of the control volume Xs,t

with the common vertex P0. It is further assumed that e1 � e2 > 0. In practice, there are several control volumes (including
Xs,t) with the common vertex P0. However, in the appendix, we only consider the contributions of Xs,t to the evaluation of
Eqs. (42)–(45), and other control volumes can be dealt with exactly the same procedure that will be presented below. We
also note that it is not necessary to distinguish the difference in time when dealing with geometrical relations. Therefore,
P0 and P spatially refer to the same point r = (x,y)T.

The center of the circle Q(h) is at P0 ¼ ðx� ~us; y� ~vs; tÞ. According to Fig. A1, hib or hie can be determined by the intersec-
tions between Q(h) and the ray e1 or e2. Denoting the angles of e1and e2 with respect the x-axis as a1, a2 respectively, we have
ekx ¼ cos ak; eky ¼ sin ak; k ¼ 1;2:
The parametric equation of the ray corresponding to ek (k = 1,2) can be written as
X ¼ xþ l cosak;

Y ¼ yþ l sin ak:
The equation of Q(h) is
½X � ðx� ~usÞ�2 þ ½Y � ðy� ~vsÞ�2 ¼ ð~asÞ2:
Therefore, the intersection of ray ek with circle Q can be obtained by the solutions of the equation
ð~usþ l cos akÞ2 þ ð~vsþ l sin akÞ2 ¼ ð~asÞ2;
which gives the solutions in terms of the parameter l,
lk;1 ¼ �sð~u cos ak þ ~v sinakÞ � s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 � ð~u sinak � ~v cos akÞ2

q
;

lk;2 ¼ �sð~u cos ak þ ~v sinakÞ þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 � ð~u sinak � ~v cos akÞ2

q
:

If bk ¼ j~u sin ak � ~v cos akj 6 ~a, the solutions are real. We note that when the solutions lk,l P 0 (k = 1,2; l = 1,2), there are
intersections between the circle Q and ray ek at
Xk;l ¼ xþ lk;l cos ak;

Yk;l ¼ yþ lk;l sinak:
The angle between vector ðXk;l � ðx� ~usÞ;Yk;l � ðy� ~vsÞÞT and the x-axis satisfies
cos hk;l ¼
~uþ lk;l cos ak

~a
;

sin hk;l ¼
~v þ lk;l sin ak

~a
:

hk,l can thus be determined by
hk;l ¼ pþ signðsin hk;lÞ arccos
uþ lk;l cos ai

a

� �
� p

	 

;

where
signðcÞ ¼
1; c P 0;
�1; otherwise:

�
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It is apparent that hk,l is independent with s.
We can therefore distinguish the following case.

(1) If bk > ã or lk,1 6 lk,2 < 0, there is no intersection between ray ek and circle Q. The number of intersection is nk = 0.
(2) Otherwise if lk,2 P 0,lk,1 < 0, there is one intersection between ray ek and circle Q. The number of intersection is nk = 1.
(3) Otherwise, there are two intersections between ray ek and circle Q. The number of intersection is nk = 2.

In order to proceed with the derivation of hie and hib in Eqs. (42)–(45), we need to determine the relative position between
e1, e2 and P0. This can be achieved by the following procedure:

(1) If ~u� e1 P 0 and e2 � ~u P 0; P0 is on the region bounded by e1 and e2, or P0 2Xs,t in short.
(2) Otherwise, P0 R Xs,t.

Using the relations discussed above, we can reach the following conclusion:

(1) If n1 = n2 = 0 and P
0
R Xs,t, Xs,t has no contribution in Eqs. (42)–(45).

(2) If n1 = n2 = 0 and P
0 2Xs,t, then hib = 0 and hie = 2p, which means that Eqs. (42)–(45) are determined exclusively by the

reconstructions on Xs,t.
(3) If n1 = n2 = 1, then hib ¼ h12; hie ¼

h22; ifh22 P h12

h22 þ 2p; otherwise

�
.

(4) If n1 = 2, n2 = 0, then hib ¼ h12; hie ¼
h11; ifh11 P h12

h11 þ 2p; otherwise

�
.

(5) If n1 = 0,n2 = 2, then hib ¼ h21; hie ¼
h22; ifh22 P h21

h22 þ 2p; otherwise

�
.

(6) If n1 = n2 = 2, there are two arcs contributing to Eqs. (42)–(45), the staring and ending angles of these two arcs are

respectively h1
ib ¼ h12; h

1
ie ¼

h22; ifh22 P h12

h22 þ 2p; otherwise

�
and h2

ib ¼ h21; h
2
ie ¼

h11; ifh11 P h21

h11 þ 2p; otherwise

�
.

We note that in all cases presented above, the dependent variables corresponding to Q(hib) and Q(hie) in Eqs. (42)–(45) are
Vi ¼ VXs;t ðP0Þ where VXs;t is the vector of the reconstructed primitive variables on Xs,t.
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[12] M. Lukáčová-Medvid’ová, J. Saibertová, Finite volume schemes for multi-dimensional hyperbolic systems based on the use of bicharacteristics, Appl.

Math. 51 (2006) 205–228.
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