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evolution Galerkin method (FVEG). In FVEG, a necessary step is to compute the dependent
variables at cell interfaces at t, + 7 (0 < T < At). The FVLEG scheme is constructed by taking
7 — 0 in the evolution operators of FVEG. The FVLEG scheme greatly simplifies the evalu-
ation of the numerical fluxes. It is also well suited with the semi-discrete finite volume
method, making the flux evaluation being decoupled with the reconstruction procedure

2/155&'06 while maintaining the genuine multi-dimensional nature of the FVEG methods. The deri-

76N15 vation of the FVLEG scheme is presented in detail. The performance of the proposed

35165 scheme is studied by solving several test cases. It is shown that FVLEG scheme can obtain
very satisfactory numerical results in terms of accuracy and resolution.
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1. Introduction

The numerical solutions of systems of hyperbolic conservation laws have been dominated by Riemann-solver-based
schemes since the work of Godunov [4], Van Leer [22], Harten-Lax [5], Osher and Solomon [15] and Roe [17]. This approach,
known as flux-difference splitting (FDS), has the desirable property of accurately resolving shock waves as well as contact
discontinuities. When extending the flux-difference schemes to multi-dimensional problems, the so-called grid aligned finite
volume approach or dimensional splitting method is adopted traditionally using one-dimensional Riemann solvers.
However, for multi-dimensional problem, there is in general no longer a finite number of directions of information
propagation. Roe [18] has pointed out that the approach based on one-dimensional Riemann solvers may lead to a misinter-
pretation of the local wave structure of the solution. In fact, it turned out that in certain cases, e.g. when there are strong
shocks or waves are propagating in directions that are oblique with respect to the mesh, this approach leads to structural
deficiencies and large errors in the solutions [8,16].

To overcome the drawbacks of existing methods based on dimensional splitting or the “grid-aligned” approaches, there
have been considerable efforts to develop so-called “genuinely multi-dimensional schemes” for solving hyperbolic conser-
vation laws in recent years [2,3,6,14]. While we are not in the position to give a detailed review of these schemes, we would
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like to draw the readers’ attention to the genuinely multi-dimensional finite volume evolution Galerkin (FVEG) method [11]
which is also the starting point of the present paper.

The finite volume evolution Galerkin (FVEG) schemes can be considered as a generalization of the original idea of Godu-
nov to multi-dimensional hyperbolic conservation laws within the framework of the finite volume approach. To construct
genuinely multi-dimensional schemes, the exact integral equations from a general theory of bicharacteristics for linear
(or linearized) hyperbolic systems were derived. These integral equations were further approximated by approximate evo-
lution operators in such a way that all of the infinitely many directions of propagation of bicharacteristics were explicitly
taken into account. These approximate evolution operators were then used to compute the interfacial dependent variables
for the evaluation of the numerical fluxes.

The FVEG schemes have been studied extensively from theoretical as well as numerical point of view and applied to
various applications [9,10,12,21]. It is shown that the FVEG schemes yield better accuracy and resolution than some well
known finite difference and finite volume schemes. However, theses schemes are more complicated in implementation than
traditional finite volume schemes. For two-dimensional FVEG schemes, the numerical fluxes across cell interfaces are
computed preferably by the Simpson rule. The use of the Simpson rule takes the multi-dimensional effects at cell vertices
into account and is beneficial to the monotonicity of the scheme [9]. Using this approach, the complication comes mainly
from the evaluation of the values of the dependent variables at t, + 7 (0 < 7 < At) at the midpoint and two corner points
of a cell interface. In practice, these interfacial values of the dependent variables are evaluated by certain approximate
evolution operators which involve the integrals around the Mach cones. These integrals can be computed exactly as well
as numerically. However, for slant Mach cones associated with the nonlinear hyperbolic systems (e.g. the Euler equations),
the exact evaluation of the integrals leads to very lengthy and tedious computations, especially when reconstructions with
higher order polynomials are adopted in the finite volume schemes. Using numerical integrations may simplify the
computation; however, it also leads to an increase of computational cost and/or a decrease of accuracy especially when
the reconstruction functions are discontinuous at cell interfaces.

In the present paper, a finite volume local evolution Galerkin (FVLEG ) method is proposed. The FVLEG method is a com-
bination of the FVEG method and the semi-discrete finite volume scheme, in which a necessary step is to let T — 0 in the
evolution operators of FVEG. It is shown that the FVLEG approach greatly simplifies the evaluation of numerical fluxes
and also makes it straightforward to apply the FVLEG scheme on general shaped control volumes. Furthermore, because
of the semi-discrete nature of the present method, the flux evaluation is decoupled with the reconstruction procedure
and time integration is independent of the spatial discretiztion. These properties are important in constructing both tempo-
rally and spatially higher order schemes. The performance of the proposed scheme is studied by solving several test cases. It
is shown that FVLEG scheme can obtain very good numerical results in terms of both accuracy and resolution.

2. The finite volume schemes
2.1. The governing equations

Although the FVEG schemes can be applied to general hyperbolic conservation laws, we consider here the two-dimen-
sional Euler equations describing the compressible inviscid flows without a loss of the generality. In conservation form
the Euler equations are

ouU oF oG
v + o + ay 0, (1)
where U is the vector of the conserved variables given as U = [p, pu, pv, pE]". The detailed formulations of the flux terms are
well known and are omitted here for brevity.

2.2. The finite volume scheme

We consider some two-dimensional domain in x-y space and assume that it is discretized into structured quadrilateral
control volumes. Examples of typical control cells are shown in Fig. 1. Finite volume schemes for Eq. (1) are obtained by con-
sidering the control volume balance equations

2// Ujdxdy+ ¢ H-ndl=0, 2)
ot Qi 00;

where € is the control volume, 3Q;; is the boundary of Q, H =Fi + Gj is the tensor of the fluxes. n = n,i + nj is the outward
unit vector normal to the surface 8€2;;. On a quadrilateral control volume with its faces denoted by Iy = livxiyjep) (k=1,...,4),
where a(k) =1 sin (“"#) ,B(k) =1 cos (&), the finite volume balance equations can be written as
Uy 13
= H - ndl, 3
ot Qij kE:; I G)
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Fig. 1. The control volumes in the finite volume approach.

where

_ Udxdy _
Uj :L and Q; = // dxdy 4)
i J oo Qx‘j

are, respectively, the cell average of the conservative variables and cell volume. f,k H-ndl is the flux across I (k=1,...,4).

There are basically two approaches to handle the time integration. The first one is the fully discrete approach for which
Eq. (3) is further integrated in time from ¢, to t,.; = t, + At to get

S o -l 4 th+At
U :U{]’-—Q—Z/ H.ndl |dt. (5)
ij k=1 Jtn I

For a temporally second-order scheme, the time integration can be approximated by the midpoint rule so that
ﬁg+1 Un - = Z H EAt/zRQU ) ndl. (6)

In Eq. (6), R, is the reconstruction operator which transforms the cell averages of the conservative variables to their spatial
distributions usually in terms of the piecewise polynomial functions; Ex is the approximate evolution operator to compute
the intermediate value of the solution at t,.12 = t, + At/2 on cell interface I, using RoU" as the initial condition. We note this
is the approach adopted in the FVEG schemes.

The second one is the semi-discrete (method of line) approach which is the one adopted in the present paper. In this ap-
proach, Eq. (3) is treated as a system of ordinary differential equations (ODEs) with respect to the time after the spatial dis-
cretization. And the system of ODEs is integrated with a certain algorithm to obtain the numerical solutions. For example, the
second-order Runge-Kutta scheme of Heun can be used for a temporally second-order finite volume scheme:

U U;;,
0 = AL [ H(E,R,U®) - ndl

i Q_Z oReU™) -ndl,

i k=1 7l
(7)
Uf.jz) = + ( H(EORQU“)) -ndl)7
u k 1 Yk

Un+1 —64

ij

where Ej is the approximate evolution operator to compute the solution at t; = t, + 0 on cell interface . It clear that for the
semi-discrete finite volume scheme, the interfacial dependent variables need only to be evolved for an infinite small period
of time to compute the numerical fluxes, whereas for the fully discrete approach, the interfacial dependent variables need to
be evolved for an finite period of time. We will see in Section 4 that the use of the semi-discrete approach greatly simplifies
the evaluation of numerical fluxes and makes it straightforward to apply the numerical scheme on general shaped control
volumes.

To complete a finite volume scheme, we must choose or construct the specific forms of the reconstruction operator, the
approximate evolution operator (Ea or Eg) and the numerical integration operator to approximate the flux f,k H - ndl In the
rest part of this section will present the procedures for reconstruction and approximate integration of the numerical fluxes,
while the approximate evolution operator Eq used in the present paper will be discussed in detail in Section 4 after a brief
review of the approximate evolution operator E, of FVEG in Section 3.
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2.3. The reconstructions

In the framework of the finite volume method, it is necessary to reconstruct a piecewise polynomial function, U(x,y,t),
from the cell average data U;;. The simplest reconstruction is the Oth order reconstruction, which is

U(nyv t)'(x‘y)egi_} = UU (8)

The Oth order reconstruction leads to a spatially first-order scheme. For a second-order scheme, a piecewise linear recon-
struction is sufficient. In the present paper, the reconstruction procedure of [19] is used. In this procedure, the reconstruction
is carried out in terms of primitive variables V = (p,u, v,p)". The gradient of primitive variables, VW, is evaluated using the
Gauss theorem:
1 4
VVij ~— Y VimAl, 9)
Qij =

where the Al is the length of the cell face I;. The primitive variables at cell interfaces, I;+12; for instance, are computed by
1. o
Viiipj = Vij + EL(VHU = Vi, Vij — Vigj),
1. - o
EL(VHU = Vi, Vij — Vigj),

where L is the slope limiter which is similar to the smoothness indicator of [20]

Viii2j=Vij —

_ max(ab,0)(a + b)

L(a,b . 10
(a.b) o (10)
Using this gradient, the piecewise linear reconstruction in €;; is expressed as
= oV oV
VO nyen, = Vi () -2+ (55) 0w a1

It should be noted that this reconstruction procedure is valid only for the structured grids. Other reconstruction procedure is
needed if the numerical scheme of the present paper is intended to be applied on the unstructured meshes.

2.4. The approximate cell interface integral
In the FVEG approach, the flux ]Ik H(Ex2RoU™) - ndl is preferably approximated by the Simpson rule, namely
/ H(Ex2RoU") - ndl ~ (H(ES!,RaU") + 4H (S5 ,RoU" ) + H(EK ,RoU") ) - meAlL /6, (12)
I
where Al is the length of the I interface, the superscripts (k,1), (k,2) represent two end points of I, interface and the super-
script (k,c) stands for the midpoint of the I, interface. It is shown in [9,10] that the use of the Simpson rule to approximate
the cell interface integral in the flux computation can lead to a scheme which is monotonic under some conditions. More-

over, it takes multi-dimensional effects from the corners into account. In the present paper, we use the same approach to
handle the flux integration which can be written as

1; H(EoR,U) - ndl ~ (H (E’g-lRQﬁ) +4H (Eﬁ-f&ﬁ) +H (E(;-ZRQU)) Al /6 (13)
in the framework of the semi-discrete finite volume scheme.
3. A brief review of the FVEG schemes
The central idea of FVEG methods is to construct E,, for evaluating the numerical fluxes through cell interfaces using the
theory of bicharacteristics in a finite volume scheme. In this section, we recall the work of Luka¢ova-Medvid'ova et al.

[8,9,11,12] to present the basic idea of the FVEG schemes and to introduce the notations that will be used in deriving the
FVLEG scheme. For this purpose, it is convenient to start with the Euler equations in primitive variable form,

V, +A;(V)Vy + Ay (V)V, =0, (14)
where
0 u p 00 v 0 p O
vo |t A - 0 u 0 % A, - 0 0 O
v 0 0 uo 00 v ;
p 0 yp 0 u 0 0 yp v
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To simplify the construction of Ex¢, the system of Euler equations is linearized by freezing the Jacobian matrices about a

reference state V = (p, i, 7, p) at point P = (&, ¥, ). The linearized system with frozen constant Jacobian matrices can be writ-
ten as

Vi +A; (V)V, + Ay (V)V, = 0.

(15)
Using the characteristic theory, Eq. (15) can be transformed in to the following quasi-diagonalized system:
Wt+A1Wx+A2Wy :S7 (16)
where
wy %(—ﬂ%-i—ucose-f—vsin@)
W == w2 = p a ﬁ% )
w3 usinf — vcos 0
Wy %<%+ucose+vsin6
t—acos0 0 O 0
) 0 u 0 0
:dlag(}~171(0),...,),174(0)) 0 0 i 0
0 0 0 u+acoso
v—acosf 0 O 0
Az = diag(iz1(0), ..., 724(0)) 0 20 0
= diag(’ e = - ,
2 8(421 2.4 0 0 ¥ 0
0 0 0 w+acoso
s la (sm 0% — cos 0%3)
S2 0
S= ~ | asing( G — acos@(""v1 —‘M>
S3 X ay
S4 %a( sin0 2% + cos 0”‘()“3’/3)

and a = /yp/p is the speed of sound.
Eq. (16) shows that each characteristic variable w; is evolved along the corresponding bicharacteristic curve

(§). = Gu). 200" (17)

where r = (x,y)7, according to the relation

Dw, (9W1 ow, ow,

Br =gt +HAul0) 5 + O ay (18)
Therefore, given the initial condition at time ¢, the solution of w; at P = (x,y,t + 1) is
Wi(X,y,t+T,0) = Wi(x — 211(0)T, ¥ — A21(0)T, t) + 5(0), (19)
where
t+1
0 = [ sx— 0t + 7).y = 2O + T - S). ) (20)
t

For any given angle 0, the four bicharacteristic curves from P denoted by C,(0), [=1,...,4 are depicted in Fig. 2. The C;(0) or
C4(0), for 0 from O to 27, generates the so-called Mach cone or the bicharacteristic cone. We denote Q(0) as the position
where C(0) hits the x-y plane at time t, which, for [=1,...,4, is given by
Q:(0)=(x—(u—acosdt,y — (v —asino)t,t),
Qa2(0) = Q3(0) = (x —ut,y — v1,¢t), (21)
Q4(0)=(x—(u+acos0)t,y — (v+asino)z,t).

Using these notations, Eq. (19) can be also written as

wi(P, 0) = wi(Q(0)) + 5;(0) (22)
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0,(0)=0 (0+r)

Fig. 2. The bicharacteristic curves and the Mach cone.

or in vector form as

WiQi(O)\  /5)(0)

A w@o) | |50
WO =1 w0 | 7| 5500 @3

w0/ \s,(0)

For 0 € (0,2m), both Q(0) and Q4(0) are circles with radius of at and center at (x — ut,y — v7,t). It is also obvious that
Q4(0) = Q1(0 + ). Q2(0) = Q3(0) are point at the center of Q;(0) and Q4(0). Multiplication of Eq. (23) with R from the left
and integration with respect 0 from 0 to 27 leads to:

V(P / (Z 1 wi(Qi(0)) +5/(6 n) (24)

In [11], the symmetries in the characteristic variables and the source terms were used to get the detailed expressions of the
solution in terms of the primitive variables

o) = p(p) P [T P Lu@ycoso-Lo@sinaao -2 - [T [ ste— - anio

x (t+1T—20),¢ 0)dcdo, (25)
u(P) = 5 /O - [— % cos 0+ u(Q) cos” 0 + (Q) sin 0.cos 9} o+ 5 /0 - /t ™" cos0S(r — [ - an(0)]

< (64T 0),20dcdo + Ju(P) - 2173 /tmpx(r S (4T 0,0dL, (26)
o(P) = 5 /0 " [—’% sin 0 + u(Q) cos 0sin 0 + v/(Q) sin’ o] a0 + 5 /0 - /t " sinos(r — [ an(o)

) (E+T—0).¢ )dgd()+2v(P’ / py(r— it x (t+T—0),0)d, 27)

=50 /Zn[p — pau(Q) cos 6 — pav(Q) sin O]do — pa— /27I MS r—[u—an(0)] x (t+1—{),0)ddo,
(28)
where the source term S is given by
S(r,t,0) := afuy(r, t,0) sin? 0 — (uy(r, t,0) + vy(r,t,0)) x sin 0 cos 0 + vy (r, t, 0) cos® 0], (29)
and

r—[i—an0)) x (t+1-0) =x—-({@—acosO)(t+1—),y— (il —acos0)(t + 1T —{)).
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We note that the notations Q = Q;(0) and P’ = Q, adopted in Ref. [11] are used in Egs. (25)—(28). Egs. (25)-(28) are exact inte-
gral equations for the solution to the linearized Euler equations (8). It is currently impossible to get an explicit solution of
these equations. Therefore, certain approximate operators which are termed as EG1 through EG5 in [11,12,23] have been
constructed to get the approximate explicit solutions. These approximate solutions are the basis of the FVEG method. When
these approximate evolution operators with 7 = At/2 are applied to the piecewise polynomial data obtained by the recon-
struction procedure, these approximate solutions are served as Ex2RoU" in Eq. (6). We will not review the detailed deriva-
tion of EG1 through EG5 in the present paper for brevity. However, some of the approximations will be used or extended in
Section 4 of the present paper when designing the FVLEG method.

4. The finite volume local evolution Galerkin method

In the present paper, the finite volume local evolution Galerkin (FVLEG ) method will be presented. The idea behind FVLEG
is very simple. If we set 7 = 0 in Eq. (24) (or Egs. (25)-(28)), it gives the solutions that are evolved for an infinite small period
of time from the initial conditions at time t in terms of the primitive variables. In this sense, the FVLEG method is functionally
identical to computing the numerical fluxes by using the Riemann solvers in the traditional semi-discrete finite volume
methods.

The simplest way to construct the approximate evolution operator Eq in FVLEG is to set T =0 in E;, the approximate evo-
lution operator of the FVEG method. In other words, we can use the approximate evolution operators EG1 through EG5
developed in [11,12,23] directly to construct the Eq by simply taking t = 0. However, when closely examining the approach
for deriving EG1 through EG5, we find that these derivations are highly relied on the Lemma 2.1 of [7]. Strictly speaking, this
lemma can be only applied to smooth functions, which is not the case of the present paper. Therefore, in this section, we
firstly derive E; using a new lemma which is similar to Lemma 2.1 but applicable to piecewise smooth functions, and then
we construct Eqy according to E,.

4.1. E;

In this section, we will describe the derivation of the approximate evolution operator E; at a vertex of the control volumes.
For the structured quadrilateral grids, there are four control volumes around the vertex r = (x,y)" which is shown in Fig. 3(a).
For a more general case such as the unstructured grids shown in Fig. 3(b), we assume there are M control volumes with a
common vertex r = (x,y)". In this case, we need to construct E; at r = (x,y)” which is the endpoint of M rays that are separated
by M control volumes. In this sense, the approximate evolution operator at the center of a cell interface can be viewed as a
special case of that at a cell vertex, which is the endpoint of two rays separated by two control volumes shown in Fig. 3(c).
We consider the general case, in which we assume the circle Q at time t corresponding to the Mach cone with its apex at
P=(x,y,t+1) is divided by the M rays with the common vertex r = (x,y)" into N segments of arc, which is shown in Fig. 4
for the structured quadrilateral grid case. For the ith arg, its starting and ending angles are denoted by 0;, and 0;,, respectively.
The 0;, and 0;, can be obtained from the geometry of the control volume and Eq. (21). It should be noted that the determi-
nation of 0;, and 0;, is far from trivial since there are many possible ways of intersections depending on the reference state
V= (p, 11, »,p) atr = (x,y)Tand geometries of the control volumes. Nevertheless, this is a purely geometrical problem and can
be solved without any principle difficulties. The procedure to determine 6, and 0;; is presented in Appendix of the present
paper. After the determination of 0;, and 0;,, Eqs. (25)-(28) can be rewritten into

p(P) = p(P) — p(P) Jri ZN: /0.6” {PEQ) - gu(Q) cos 0 — % v(Q) sin 0} do

@ 214 a2
ﬁ 1 N Oie t+T 5 _ -
_Eﬁ;/% u S(r— [ — an(0)] x (t+f—c),,,0)dc}d67 (30)
(a) (b) (©

Fig. 3. The locations where the approximate evolution operators E; are constructed. (a) The vertex of the control volumes for the structured quadrilateral
grid; (b) the vertex of the control volumes for the unstructured grid; (c) the midpoint of the edge of two adjacent control volumes.
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Fig. 4. Possible intersections between the Mach cone and the edges of the control volumes.

1 N O D Q
:—Z/ {—TCOS9+H(Q)c0529+v(Q) siné)cos@}d@
27'[ i=1 Oy p

1 N O t+1

— 0S(r — [i — an(0)] x (t + T —{),¢,0)d¢|do
fom X [ cososte— - an@) < e 7020

1 P, -l t+1 -
+yul )fﬁ pe(r—ax (t417 (), 0)d, (31)

N ie
(P) = 1 /0 {_% sin 6 + u(Q) cos 0sin 0 + v(Q) sin’ 0} do

21 —
1 N Oie t+1 . ~ . icla
XE;/{)"’ {/t SinOS(r — [u —an(0)] x (t+ 71— ), 0) 4 0
‘l ‘l t+1 B
+50(P) 2 py(r—ux(t+1-{),0d, (32)
t
1 N Ose . 0 i ) 0d9
2—21:/% — pau(Q)cos 0 — pav(Q) sin 0]
1 N 8 T B ~
—pas— S(r—[u—an(0 - 0)dc| do. 33
mgng;jm{[ (k[ - an(0)] x (£ +7 - 0),,0)de (33)

To avoid the computation of the integrals ]t P(r—ux (t+71—¢),)dl and ][” py(r—u x (t+7 —{),{)d{ in Egs. (31) and
(32), we use the following relations [11]:

4T

Po(r— 8 x (£ +7T— ), 0)dt = —plu(P) — u(P)], (34)

py(r—ux (t+1-0),0dl = —plv(P) — v(P)]. (35)

Another difficulty in computing Egs. (30)-(33) arises from the evaluation of the integrals containing the source terms. Here
we use the rectangle rule to approximate the time integrals of the source term,

Oe t+1 ~ ~ O
/ow {/{ S(r — [ —an(0)] x (t+r—C)7579)dC]d0z r/% S(Q(0))do, (36)
Oie t+1 O
/ {/ cos 0S(r — [u —an(0)] x (t+1-{),¢, H)dg“} do ~ r/ S(Q(0)) cos 0do, (37)
b ! Oip
/oie {/m sin0S(r — [@ — an(0)] x (t +1 - {),¢, G)dé} do~1 [ S(Q(0))sinodo. (38)
04 t %
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This approximations have been used in [11] to construct the EG1, EG3 operators. To further simplify the evaluation of Egs.
(36)-(38), the following lemma is introduced [1].

Lemma 4.1. Suppose ® € C'(R?), and ¢ € C'(R) is continuous and differentiable along the arc: A(Q): {Q=(rcos0,rsin0);
0 € (0, bie )}. If the integrations are along the arc, we have the following relation:

i be (. O ow
$000(Q0) ~ 6000 = [ de@do—r [ (sin0G2 —coso 5o,
Oip Oip ox Ay
This lemma is similar to the Lemma 2.1 of [7]. However, Lemma 2.1 is only applicable to 27 periodic smooth functions.
The present lemma is valid for the integrations along an arc. It is then applicable to the integration along a circle with piece-
wise smooth data. Using this lemma, the evaluation of the integrals containing the source terms in Eqgs. (36)-(38) can be
greatly simplified. For example, taking ¢ = sin6, ® =u and r = dt, we have

Oje Oie a
sin(0i)u(Q(0i)) — sin(0;)u(Q(0p)) = /0 cos 0u(Q)do — at /0 sin 6<sir1 (9% — CoS 03—5) do.

Similarly, taking ¢ = —cos6, w = v, r = at, we obtain

— c08(0:) V(Q(0:e)) + cOS(03) 2(Q(03)) = /o : sin0v(Q)do + at /{) : cos 0 <sin 0% — cos 9‘3-5) do.
Therefore,
Ore Oie
T 8 S5(Q(6))do = /0 (u(Q(0)) cos 6+ v(Q(6)) sin )dO — sin(0;e)u(Q (i) + cos(0ie) (Q (i) + sin(0ip)u(Q(63))
— cos(0ip) v(Q(03))- (39)

Similarly, we can get

[ 5(Q) sinodo = / " (2u(Q(0)) sin 0.cos 0+ p(Q(0))(2 sin’ 0 — 1))d0 — sin’ 0u(Q(0i))
Oip

Oy
+ 5in B cos B, v(Q(6ie)) + sin® O u(Q(63)) — sin O, cos B v(Q(0)) (40)

and
o [ 5(Q) cos 0do — / " (0(Q(0))(2cos? 0 — 1) + 20(Q(0)) sin 005 0)d0 — sin O 05 0 tt(Q ()
J iy O3
+ €082 0, (Q(0;)) + sin 03 cos 03 u(Q(03)) — cos? 03 v(Q(0ip))- (41)

So far, we have constructed the approximate evolution operator E.. When we set T = At/2, this operator can be used to com-
pute the numerical fluxes in FVEG schemes. We note the present derivation of the approximate evolution operator E; is dif-
ferent with those of [11] in the fact that present method can be applied directly to piecewise smooth data obtained from the
reconstruction procedure.

42. E,

To construct Eg, we let T — 0 in Egs. (30)-(33). We note that 0;, and 0;. do not depend on 7. The effects of T — 0 is to make
P — Py, Q — Py and P — Py where Py = (x,y,t); and the length of the arc with two end points Q(0;,) and Q(0;.) will tends to zero
when 7 — 0. This fact is significant in simplifying the integrals in Eqs. (30)-(33) and (39)-(41), because in this case, we have

V(Q(0)) — V; for 0 < 0 < O,
where V; is the vector of the primitive variables at Py evaluated in terms of the reconstruction in the control volume contain-
ing the arc with two end points Q(0;,) and Q(0;.). Therefore, the primitive variables which are the functions of Q(0) in Egs.

(30)—(33) and (39)-(41) can be considered as constants for 0;, < 0 < 0, and can thus be taken out from the integrals. For
example, Eq. (39) can be simplified as

‘ﬂie ‘oie ()xc
T S(Q(6))do = u; / cos 0do + v; / sin 0d0 — sin(0;)u; + cos(0e) v; + sin(0y)u; — cos(Op) v; = 0.

Oip Oip J Oy

It is also easy to prove that

'ﬂie
r/ S(Q)sin0dg — 0
O,b
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and
Oie

T 5(Q)cos0do =0

Oip

The extensive use of this argument in Eqgs. (30)-(33) leads to the following formulations:

, Py 1< o . . 0

p(P) = p(P) — 512 +on ; L% e — Op) %u,-(sm 0 — sin 0) + % v;(cos 0;, — cos 0,»,,)} , (42)
1 D . . O — 0 SiN20; — sin20;, €05 20;, — €0S 20;,

u(P) = ; {—E(sm O — Sin 0p) + u,< 5+ 7} ) _— 4 }, (43)
1 [p cos 20, — €0S 203, Oie — 0 SiN20; — sin 20y,

v(P) = = ; Loa (cos 0 — €os 0p) — 7 + v,( 5~ 7 )} (44)

1 & R . .
p(P) =5 > [pi(0ie — ) — pau;(sin O — sin Oip) + PaAV;(COS i, — €OS Oyp)], (45)

which are the specific forms of E, for the present paper.
After the construction of E,, the implementation of the FVLEG method can be summarized as follows.

(1) Reconstruction. The reconstruction procedures of Section 2.3 are used.

(2) Evaluation of the numerical fluxes. In the present paper, the numerical fluxes are computed using Eq. (13) in which the
interfacial values of the dependent variables are obtained by applying Ey on the reconstructed piece-wise polynomial
dependent variables.

(3) The time integration. We use the second-order Runge-Kutta scheme, Eq. (7), to solve the system of ODEs resulted from
the semi-discrete finite volume approach.

4.3. Remarks

Remark 1. Lemma 4.1 is a key element in constructing Eq. The direct consequence of Lemma 4.1 is that all terms containing
S(r—[@—an(0)] x (t+ 71 —{), 0) in Eqs. (30)-(33) vanish in Ep. If Lemma 2.1 of [7] is used instead, these terms are not zero
when 7 — 0. We note that the source terms S in Eq. (16) are not simply set to zero in deriving E,. In fact, the terms containing
px and p, in Egs. (31) and (32) are parts of S. During the review process of the present paper, we found that the same lemma
had been used in [1] for different purpose.

Remark 2. It is interesting to note that in [9,13], the E;was designed as the combination of an approximate evolution oper-
ator for piecewise constant data (E<™") and another approximate evolution operator for continuous bilinear data (E’T"'“”).
Although ES™ is also applied to piecewise smooth data, it is different with the E; of the present paper. This can be seen
clearly from the construction of E°™. In deriving E°™, the spatial derivatives such as ¢ are approximated by

N 1 2T

Du(P'(8)) ~ ¢(Q(0,t)) cos 0do

et

(please refer to [9] for notations); then the integration in above equation is further approximated in order that the
produce the exact solution of the one dimensional linear wave equation with piecewise constant data.

ES™ can

Remark 3. Using the procedures of this section, we cast the computation of the integrals in E, into the evaluation of 0;, and
;e in Eo. This practice simplifies the evaluation of the numerical fluxes. Furthermore, the present numerical flux evaluation
algorithm is designed to be applied on general shaped control volumes. Eqs. (42)-(45) are very general and can be applied on
both structured and unstructured meshes.

Remark 4. The present scheme is a semi-discrete finite volume scheme in which the spatial accuracy is solely determined
by the reconstruction procedures. If a higher order reconstruction is used, the present scheme can achieve higher spatial
accuracy. For the FVLEG scheme, the Ej is independent of the reconstruction procedures. On the other hand, the E; in the
FVEG schemes is closely related to the reconstruction procedures, which makes it more complicate to extend the FVEG
schemes to higher order of accuracy.
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5. Numerical tests

In this section, several test cases are presented to verify the accuracy as well as the shock capturing capability of the pres-
ent scheme. It is reported that the FVEG schemes using some of the approximate evolution operators (EG1-EG4) did not pro-
vide full stability for a CFL number of 1 [9]. However, the numerical tests show that the present scheme is stable up to a CFL
number of 1 when the second-order Runge-Kutta method is used for time integration. In all the test cases of this section, the
CFL number is taken as 0.8.

5.1. Accuracy

We use two test cases to study the accuracy of the present numerical scheme. The first test case is taken from [6]. The
initial condition has zero velocity and radially symmetric p and E which are expressed as

1-0.1(cos(4nr)—1) if0<r<0.5,

0) = E(x,y,0) =
p(x.y,0) = E(x,y,0) {1 if r > 0.5,

where r = /X2 + y2. The problem is solved on a [-1,1] x [-1,1] plane domain.

This case is one-dimensional in nature. Therefore, a 1-D solver is used to compute the “exact solution”. The grid number is
5000 which is fine enough to obtain a grid independent solution for this test case. Then the numerical results on a sequence
of grids are compared to the “exact” solution. In this calculation, the piecewise bilinear recovery algorithm of [9] is used in
the reconstruction procedure. For comparison purpose, this test case is also computed using a Lax-Wendroff type finite
volume (LWFV) scheme in which the evolution operator Eay 2 in Eq. (6) is constructed by computing the interfacial
dependent variables using

1 At - - . -
VI = 5 (V- V) = 5 (A (V)i + Ao (V) )+ (A (V) + Ao (V)Y ), .

Tables 1 and 2 depict respectively the computed errors in the L; norm for the present scheme and the LWFV scheme at
t = 0.5.